Codez plus facilement, sans
bugs avec la programmation
fonctionnelle

C’est quoi la programmation fonctionnelle ?

Et pourquoi U'apprendre ?
C’est un paradigme de programmation

Au méme titre que la Programmation Impérative, la POO... (Puristes s'abstenir) 33

On y manipule deux choses :

s Des fonctions

s Des données

Mise a ['écart pendant 20 ans mais redevient a la mode depuis une dizaine
d’années

Répond particulierement bien aux défis modernes de linformatique
» Scalabilité

= Programmation concurrente et parallele

Utile et utilisée dans de nombreux domaines

A
= Apache Spark

= Databricks

= Microsoft SynapseML

Cloud, Réseaux sociaux, Streaming...
= Microsoft Azure, Clever Cloud

m Twitter, Linkedin, Facebook, WhatsApp...

= Netflix, Disney+, Spotify...

Jeu

= Ankama

m DevSisters

Pourquoi ces entreprises utilisent-elles la FP ?

Découvrons comment grace a la programmation fonctionelle :
& Avoir un code clair
%2 Esquiver de nombreux bugs

Coder plus vite

Langage utilisé pour ce Talk

Scala

Le probleme

Objectif
Créer un jeu de blackjack en ligne.

Regles (en gros) :

» | a mise est décidée par le croupier
= Chaque joueur commence avec deux cartes
m Cartes de 2-9
= Roi (10 points)
m As (1 ou ll points au choix)
» Chaque joueur peut piocher une troisieme carte
» Pour gagner, la somme des cartes doit étre inférieure a 21 et supérieure a celle du croupier

» Chacun est contre le croupier et pas contre les autres joueurs

Les etapes d’'un round

Happy path + effets (Packets TCP, requétes en BDD...)

» Le serveur indique aux joueurs la mise et les cartes de départ
= |nternet (e.g TCP)

m | e joueur envoie son choix au serveur : piocher une carte, doubler la mise ou ne rien faire

= [nternet

= Sile joueur pioche, le serveur renvoie la carte piochée
= [nternet

m |e serveur envoie le résultat de la partie

m Internet

Le code n'est finalement pas si simple

sendPlayerMessage(player, encodeCard(card))

sendPlayerMessage(player, encodeResult(getRoundResult()))

Charge mentale :

m getPlayerMessage: Blocage +
= decodePlayerChoice:
» drawCard:

» sendPlayerMessage: Blocage +

Vraiment pas simple

val player = ???

val userMessage = getPlayerMessage(player)
val choice = decodePlayerChoice(userMessage)

if choice = DrawACard then
val card = drawCard()
player.addCardToHand(card)
sendPlayerMessage(player, encodeCard(card))
else if choice = DoubleDown then
player.bet *= 2

sendPlayerMessage(player, encodeResult(getRoundResult()))

val player = ???

val userMessage = getPlayerMessage(player)
val choice = decodePlayerChoice(userMessage)

if choice = DrawACard then
val card = drawCard()
player.addCardToHand(card)
sendPlayerMessage(player, encodeCard(card))
else if choice = DoubleDown then
player.bet *= 2

sendPlayerMessage(player, encodeResult(getRoundResult()))

En méme temps

val player = ???

val userMessage = getPlayerMessage(player)
val choice = decodePlayerChoice(userMessage)

if choice = DrawACard then
val card = drawCard()
player.addCardToHand(card)
sendPlayerMessage(player, encodeCard(card))

val player = ???

val userMessage = getPlayerMessage(player)
val choice = decodePlayerChoice(userMessage)

if choice = DrawACard then
val card = drawCard()
player.addCardToHand(card)
sendPlayerMessage(player, encodeCard(card))

Plusieurs questions

» Peut-on s’assurer de bien avoir géré toutes les erreurs ?
= Comment gérer le cas ou plusieurs jouent sur une méme partie ?

m Peut-on gérer plusieurs utilisateurs en méme temps

Le tout, en ayant un code plus clair ?

A SIMPLE STEP-BY-STEP

En programmation fonctionnelle, ces types de
fonctions n'existent pas.

Ou du moins, sont évités au maximum.

Nous utilisons a la place des fonctions 44 pures /4

Qu’est-ce qu'une fonction pure ?
Une fonction pure est une fonction:
= Totale

m Déterministe

m Sans effet de bord

Comme toutes les fonctions mathématiques

def plus(x: Int, y: Int): Int = x + vy

Fonction totale

Fonction non totale

def decodePlayerChoice(message: Json): PlayerChoice = ???

=cmS decodePla}’erChﬂicegi-._

Au fond, une erreur n'est qu'une valeur parmi d’autres

def decodePlayerChoice(message: Json): Either[InvalidChoiceError, PlayerChoice] = ???

Either[L, R] veutdire "une valeur de type L (Left) oudetype R (Right)"

decodePlayerChoiceii’i

Plus possible d’oublier de gérer le cas d’erreur

val choice: PlayerChoice = decodePlayerChoice(json)

-- [E007] Type Mismatch Error:
1 |val choice: PlayerChoice = decodePlayerChoice(json)

| ANAAANANANANANAANNANANNANNAANNNANNAN

| Found: Either[InvalidChoiceError, PlayerChoice]
| Required: PlayerChoice

| longer explanation available when compiling with ~-explain’
1 error found

Autre exemple : gestion de l'absence de valeur

def drawCard(): Option[Card] = ???

drawCard

Fonction déeterministe

Fonction non déterministe

val cardsPile: mutable.Stack[Card] = mutable.Stack(cardA)

def drawCard(): Option[Card] = stack.pop()

drawCard()
drawCard()

Il faut rendre les dépendances explicites

def drawCard(cardsPile: mutable.Stack[Card]): Option[Card] = cardsPile.pop()

drawCard

Fonction sans effet de bord

drawCard n’est pas encore pure

La pile est potentiellement modifiée a chaque appel !

def drawCard(cardsPile: mutable.Stack[Card]): Option[Card] = cardsPile.pop()

cardPile est modifiee

Il faut renvoyer le nouvel état de la liste/pile

Cette fois, drawCard est réellement pure.

def drawCard(cardsPile: List[Card]): Option[(Card, List[Card])] =
if cardsPile.size > 0 then Some((cardsPile.head, cardsPile.tail))
else None

Qu’ est ce qu ‘on y gagne ?

Est-ce qu e se serait pas compliqué la

Transparence référentielle

Tout appel d’'une fonction pure peut-étre remplacé par son résultat

if decodePlayerChoice(json) = DrawCard then ???
else if decodePlayerChoice(json) = DoubleDown then ?2??
else ?7??

Il est donc trés simple de factoriser plusieurs appels de fonctions en un seul. Aussi pratique pour la mise en
cache de données.

val choice = decodePlayerChoice(json)

if choice = DrawCard then ???
else if choice = DoubleDown then ??2?
else ???

Avec cette seule propriéte, tout devient plus simple

Nos fonctions des valeurs, des briques que nous pouvons composer comme bon nous semble

Exemple : calculer la valeur d’'une main

Exemple impératif tel qu'on le ferait en Java ou Python

enum Card:
case Number(value: Int)
case Jack
case Queen
case King
case Ace

def cardValue(card: Card): Int = card match

case Number(value) = value
case Jack | Queen | King = 10
case Ace = 11

def handValue(hand: List[Card]): Int =
var result = 0

for card < hand do
result += cardValue(card)

return result

Mais nous pouvons maintenant faire mieux

handvValue(hand: List[Card]): Int = hand
.map(cardvalue)
.reduce((a, b) = a + b)

= map estune méthode de List quiprend une autre fonction A = B en parametre et Uapplique a chaque
élément. Ici :
= A est Card
m B est Int

» reduce estune méthodede List quiprend une autre fonction (A, A) = A en parametre et lapplique
entre les éléments. Ici :

= A est Int

Exemple plus complexe : Pseudos du top 10 féminin

enum Gender:
case Male, Female, Other

case class Player(name: String, gender: Gender)

case class Game(id: Int, winners: Map[Player, Boolean])

def topl0female(players: List[Player], games: List[Game]): List[Player] =
players
.sortBy(player = games.count(_.winners.getOrElse(player, false)))
.takeRight(10)
.map(_.name)

C'est ce gu'on appelle des monades

Et ce pattern ne s’applique pas qu’aux listes !

Option

Et si on pouvait facilement traiter les valeurs absentes ?

def getDBPassword(
programArguments: Map[String, String],
configFile: Map[String, String],
environmentVariables: Map[String, String]
): Option[String] =
programArguments
.get("--db-password")
.orElse(configFile.get("db.password"))
.orElse(environmentVariables.get("DB_PASSWORD"))

val passwordOrDefault = getDBPassword(programArguments, configFile, environmentVariable).getOrElse("default_password")

Configuration

Et si on pouvait facilement déclarer la configuration de notre programme ?

case class BlackjackConfig(maxPlayerByRound: Option[Int], maxConcurrentRounds: Int)

val config = (
prop("config.maxPlayerByRound").or(env("MAX_PLAYER_BY_ROUND")).option,
prop("config.maxConcurrentRounds").or(env("MAX_CONCURRENT_ROUNDS")).default(1)
).mapN(BlackjackConfig.apply)

Tests

Et si on pouvait automatiquement générer nos données de test ?

val genderGenerator: Generator[Gender] = oneOf(Gender.values)

val playerGenerator: Generator[User] = (
stringGenerator,
genderGenerator

).mapN(User.apply)

val gameGenerator: Generator[Game] = (
idGenerator,
playerGenerator
.zip(booleanGenerator)
.repeat
.map(_.toMap)
) .mapN(Game.apply)

Jusgu’a méme des programmes

Et si on pouvait lancer en parallele des programmes, les relancer s'ils échouent, etc. ?

def pingServer(url: String): ZIO[HttpClient, ConnectionError, Int] = 2?2

val lowestPing: ZIO[HttpClient, ConnectionError, Int] =
pingServer(euServer)
.race(usServer) //Le plus rapide a répondre entre EU et US est gardé
.timeout(5.seconds) //Si les deux serveurs prennent plus de 5s, on échoue
.retryN(3) //0n réessaie 3 fois si aucun des deux serveurs ne réussit

Live coding
Encodage JSON

Composition automatique des briques

Quand la programmation fonctionnelle rencontre la programmation logique

Pour certaines briques, la composition est "évidente"

Il n’y a pas pas 12 facons différentes de générer des User pour nos tests

val genderGenerator: Generator[Gender] = oneOf(Gender.values)

val playerGenerator: Generator[User] = (
stringGenerator,
genderGenerator

).mapN(User.apply)

val gameGenerator: Generator[Game] = (
idGenerator,
playerGenerator
.zip(booleanGenerator)
.repeat
.map(_.toMap)
) .mapN(Game.apply)

Une machine pourrait le faire a notre place!

Au fait, pourquoi notre langage ne pourrait pas le faire tout seul ?

Certains langages fonctionnels ont cette capacité

Nous pouvons déclarer des preuves que notre langage va automatiquement assembler pour produire ce que
nous voulons.

Axiomes

given stringGenerator: Generator[String] = oneOf('a' to 'z' ++ 'A' to 'Z')
.repeat(7) //List('R', 'a', 'p', 'h', 'a', 'e', 'l')
.map(_.mkString) //"Raphael"

given intGenerator: Generator[Int] = ???

Théoremes

given listGenerator[A]l(using aGenerator: Generator[A]): Generator[List[A]] =
aGenerator.repeat(n)

Pour tout A,si A peut étre généré, alors une List[A] peut étre générée.

given Generator[EmptyTuple] = _ = EmptyTuple

given [H, T <: Tuplel(using headGenerator: Generator[H], tailGenerator: Generator[T]): Generator[H *: T] = seed =
headGenerator.generate(seed) *: tailGenerator.generate(seed)

Pour tout A1, ..., AN, sices types sont générables alors le tuple (A1, ..., AN) aussi. Cet exemple est
récursif.

def derived[A]l(using m: Mirror.ProductOf[A], fieldsGenerator: Generator[m.MirroredElemTypes]): Generator[A] =
fieldsGenerator.map(m.fromTuple)

Pour tout F1,.., FN lestypes des champs d'une case class A, sices types sont générables alors A
aussi.

Application a notre jeu de Blackjack

val genderGenerator: Generator[Gender] = derived[Gender]

val playerGenerator: Generator[Player] = derived[Player]

val gameGenerator: Generator[Game] = derived[Game]

Ou encore plus simple:

enum Gender derives Generator:
case Male, Female, Other

case class Player(name: String, gender: Gender) derives Generator

case class Game(id: Int, winners: Map[Player, Boolean]) derives Generator
Résultat:

= Génération de la logique pour nous
= Aucun impact sur les performances

m Si ce n‘est pas possible, nous sommes prévenus avant méme de lancer le code!

Merci de m’avoir écouté

Des questions ?

