
Codez plus facilement, sans

bugs avec la programmation

fonctionnelle

C’est quoi la programmation fonctionnelle ?
Et pourquoi l’apprendre ?

C’est un paradigme de programmation

Au même titre que la Programmation Impérative, la POO… (Puristes s’abstenir) 👀

On y manipule deux choses :

Des fonctions

Des données

Mise à l’écart pendant 20 ans mais redevient à la mode depuis une dizaine

d’années

Répond particulièrement bien aux défis modernes de l’informatique

Scalabilité

Programmation concurrente et parallèle

Utile et utilisée dans de nombreux domaines

IA

Apache Spark

Databricks

Microsoft SynapseML

Cloud, Réseaux sociaux, Streaming…

Microsoft Azure, Clever Cloud

Twitter, Linkedin, Facebook, WhatsApp…

Netflix, Disney+, Spotify…

Jeu

Ankama

DevSisters

Pourquoi ces entreprises utilisent-elles la FP ?
Découvrons comment grâce à la programmation fonctionelle :

👩🏻‍💻 Avoir un code clair

🚧 Esquiver de nombreux bugs

🚀 Coder plus vite

Langage utilisé pour ce Talk

Scala

Le problème

Objectif
Créer un jeu de blackjack en ligne.

Règles (en gros) :

La mise est décidée par le croupier

Chaque joueur commence avec deux cartes

Cartes de 2-9

Roi (10 points)

As (1 ou 11 points au choix)

Chaque joueur peut piocher une troisième carte

Pour gagner, la somme des cartes doit être inférieure à 21 et supérieure à celle du croupier

Chacun est contre le croupier et pas contre les autres joueurs

Les étapes d’un round
Happy path + potentielles erreurs (du point de vue du serveur) + effets (Packets TCP, requêtes en BDD…)

Le serveur indique aux joueurs la mise et les cartes de départ

Internet (e.g TCP)

Le joueur envoie son choix au serveur : piocher une carte, doubler la mise ou ne rien faire

Message (e.g JSON) malformé

Choix invalide

Internet

Si le joueur pioche, le serveur renvoie la carte piochée

Internet

Le serveur envoie le résultat de la partie

Internet

Le code n’est finalement pas si simple

Charge mentale :

getPlayerMessage: Blocage + Erreurs possibles (e.g réseau)

decodePlayerChoice: Erreurs possibles (choix/message invalide)

drawCard: Erreurs possibles (plus de carte dans la pile)

sendPlayerMessage: Blocage + Erreurs possibles (e.g réseau)

 sendPlayerMessage(player, encodeCard(card))

sendPlayerMessage(player, encodeResult(getRoundResult()))

val player = ???

val userMessage = getPlayerMessage(player)
val choice = decodePlayerChoice(userMessage)

if choice == DrawCard then
 val card = drawCard()
 player.addCardToHand(card)

else if choice == DoubleDown then
 player.bet *= 2

Vraiment pas simple

val player = ???

val userMessage = getPlayerMessage(player)
val choice = decodePlayerChoice(userMessage)

if choice == DrawACard then
 val card = drawCard()
 player.addCardToHand(card)

 sendPlayerMessage(player, encodeCard(card))

else if choice == DoubleDown then
 player.bet *= 2

sendPlayerMessage(player, encodeResult(getRoundResult()))

val player = ???

val userMessage = getPlayerMessage(player)
val choice = decodePlayerChoice(userMessage)

if choice == DrawACard then
 val card = drawCard()
 player.addCardToHand(card)

 sendPlayerMessage(player, encodeCard(card))

else if choice == DoubleDown then
 player.bet *= 2

sendPlayerMessage(player, encodeResult(getRoundResult()))

val player = ???

val userMessage = getPlayerMessage(player)
val choice = decodePlayerChoice(userMessage)

if choice == DrawACard then
 val card = drawCard()
 player.addCardToHand(card)

 sendPlayerMessage(player, encodeCard(card))

val player = ???

val userMessage = getPlayerMessage(player)
val choice = decodePlayerChoice(userMessage)

if choice == DrawACard then
 val card = drawCard()
 player.addCardToHand(card)

 sendPlayerMessage(player, encodeCard(card))

En même temps

Plusieurs questions

Peut-on s’assurer de bien avoir géré toutes les erreurs ?

Comment gérer le cas où plusieurs jouent sur une même partie ?

Peut-on gérer plusieurs utilisateurs en même temps

Le tout, en ayant un code plus clair ?

En programmation fonctionnelle, ces types de
fonctions n’existent pas.
Ou du moins, sont évités au maximum.

Nous utilisons à la place des fonctions ✨ pures ✨

Qu’est-ce qu’une fonction pure ?
Une fonction pure est une fonction :

Totale

Déterministe

Sans effet de bord

Comme toutes les fonctions mathématiques

def plus(x: Int, y: Int): Int = x + y

Fonction totale

Fonction non totale

def decodePlayerChoice(message: Json): PlayerChoice = ???

Au fond, une erreur n’est qu’une valeur parmi d’autres

Either[L, R] veut dire "une valeur de type L (Left) ou de type R (Right)"

def decodePlayerChoice(message: Json): Either[InvalidChoiceError, PlayerChoice] = ???

Plus possible d’oublier de gérer le cas d’erreur

val choice: PlayerChoice = decodePlayerChoice(json)

-- [E007] Type Mismatch Error: ---
1 |val choice: PlayerChoice = decodePlayerChoice(json)
 | ^^^^^^^^^^^^^^^^^^^^^^^^
 | Found: Either[InvalidChoiceError, PlayerChoice]
 | Required: PlayerChoice
 |
 | longer explanation available when compiling with `-explain`
1 error found

Autre exemple : gestion de l’absence de valeur

def drawCard(): Option[Card] = ???

Fonction déterministe

Fonction non déterministe

val cardsPile: mutable.Stack[Card] = mutable.Stack(cardA)

def drawCard(): Option[Card] = stack.pop()

drawCard() //Some(cardA)

drawCard() //None

Il faut rendre les dépendances explicites

def drawCard(cardsPile: mutable.Stack[Card]): Option[Card] = cardsPile.pop()

Fonction sans effet de bord

drawCard n’est pas encore pure
La pile est potentiellement modifiée à chaque appel !

def drawCard(cardsPile: mutable.Stack[Card]): Option[Card] = cardsPile.pop()

Il faut renvoyer le nouvel état de la liste/pile
Cette fois, drawCard est réellement pure.

def drawCard(cardsPile: List[Card]): Option[(Card, List[Card])] =
 if cardsPile.size > 0 then Some((cardsPile.head, cardsPile.tail))
 else None

Qu’est-ce qu’on y gagne ?
Est-ce qu’on ne se serait pas compliqué la vie pour rien ?

Transparence référentielle
Tout appel d’une fonction pure peut-être remplacé par son résultat

Il est donc très simple de factoriser plusieurs appels de fonctions en un seul. Aussi pratique pour la mise en

cache de données.

if decodePlayerChoice(json) == DrawCard then ???
else if decodePlayerChoice(json) == DoubleDown then ???
else ???

val choice = decodePlayerChoice(json)

if choice == DrawCard then ???
else if choice == DoubleDown then ???
else ???

Avec cette seule propriété, tout devient plus simple
Nos fonctions des valeurs, des briques que nous pouvons composer comme bon nous semble

Exemple : calculer la valeur d’une main
Exemple impératif tel qu’on le ferait en Java ou Python

enum Card:

 case Number(value: Int)

 case Jack

 case Queen

 case King

 case Ace

def cardValue(card: Card): Int = card match
 case Number(value) => value
 case Jack | Queen | King => 10
 case Ace => 11

def handValue(hand: List[Card]): Int =
 var result = 0

 for card <- hand do
 result += cardValue(card)

 return result

Mais nous pouvons maintenant faire mieux

map est une méthode de List qui prend une autre fonction A => B en paramètre et l’applique à chaque

élément. Ici :

A est Card

B est Int

reduce est une méthode de List qui prend une autre fonction (A, A) => A en paramètre et l’applique

entre les éléments. Ici :

A est Int

def handValue(hand: List[Card]): Int = hand
 .map(cardValue)

 .reduce((a, b) => a + b) //ou plus simple: reduce(_ + _)

Exemple plus complexe : Pseudos du top 10 féminin

enum Gender:

 case Male, Female, Other

case class Player(name: String, gender: Gender)

//true = gagné, false = perdu

case class Game(id: Int, winners: Map[Player, Boolean])

def top10female(players: List[Player], games: List[Game]): List[Player] =
 players

 .sortBy(player => games.count(_.winners.getOrElse(player, false)))
 .takeRight(10)

 .map(_.name)

C’est ce qu’on appelle des monades
Et ce pattern ne s’applique pas qu’aux listes !

Option
Et si on pouvait facilement traiter les valeurs absentes ?

def getDBPassword(

 programArguments: Map[String, String],

 configFile: Map[String, String],

 environmentVariables: Map[String, String]

): Option[String] =
 programArguments

 .get("--db-password")

 .orElse(configFile.get("db.password"))

 .orElse(environmentVariables.get("DB_PASSWORD"))

val passwordOrDefault = getDBPassword(programArguments, configFile, environmentVariable).getOrElse("default_password")

Configuration
Et si on pouvait facilement déclarer la configuration de notre programme ?

case class BlackjackConfig(maxPlayerByRound: Option[Int], maxConcurrentRounds: Int)

val config = (
 prop("config.maxPlayerByRound").or(env("MAX_PLAYER_BY_ROUND")).option,

 prop("config.maxConcurrentRounds").or(env("MAX_CONCURRENT_ROUNDS")).default(1)

).mapN(BlackjackConfig.apply)

Tests
Et si on pouvait automatiquement générer nos données de test ?

val genderGenerator: Generator[Gender] = oneOf(Gender.values)

val playerGenerator: Generator[User] = (
 stringGenerator,

 genderGenerator

).mapN(User.apply)

val gameGenerator: Generator[Game] = (
 idGenerator,

 playerGenerator

 .zip(booleanGenerator)

 .repeat

 .map(_.toMap)

).mapN(Game.apply)

Jusqu’à même des programmes
Et si on pouvait lancer en parallèle des programmes, les relancer s’ils échouent, etc. ?

def pingServer(url: String): ZIO[HttpClient, ConnectionError, Int] = ???

val lowestPing: ZIO[HttpClient, ConnectionError, Int] =
 pingServer(euServer)

 .race(usServer) //Le plus rapide à répondre entre EU et US est gardé

 .timeout(5.seconds) //Si les deux serveurs prennent plus de 5s, on échoue

 .retryN(3) //On réessaie 3 fois si aucun des deux serveurs ne réussit

Live coding
Encodage JSON

Composition automatique des briques

Quand la programmation fonctionnelle rencontre la programmation logique

Pour certaines briques, la composition est "évidente"
Il n’y a pas pas 12 façons différentes de générer des User pour nos tests

Une machine pourrait le faire à notre place !

Au fait, pourquoi notre langage ne pourrait pas le faire tout seul ?

val genderGenerator: Generator[Gender] = oneOf(Gender.values)

val playerGenerator: Generator[User] = (
 stringGenerator,

 genderGenerator

).mapN(User.apply)

val gameGenerator: Generator[Game] = (
 idGenerator,

 playerGenerator

 .zip(booleanGenerator)

 .repeat

 .map(_.toMap)

).mapN(Game.apply)

Certains langages fonctionnels ont cette capacité
Nous pouvons déclarer des preuves que notre langage va automatiquement assembler pour produire ce que

nous voulons.

Axiomes

given stringGenerator: Generator[String] = oneOf('a' to 'z' ++ 'A' to 'Z')
 .repeat(7) //List('R', 'a', 'p', 'h', 'a', 'e', 'l')

 .map(_.mkString) //"Raphael"

given intGenerator: Generator[Int] = ???

Théorèmes

Pour tout A , si A peut être généré, alors une List[A] peut être générée.

Pour tout A1 , …, AN , si ces types sont générables alors le tuple (A1, ..., AN) aussi. Cet exemple est

récursif.

Pour tout F1 , …, FN les types des champs d’une case class A , si ces types sont générables alors A

aussi.

given listGenerator[A](using aGenerator: Generator[A]): Generator[List[A]] =
 aGenerator.repeat(n)

given Generator[EmptyTuple] = _ => EmptyTuple

given [H, T <: Tuple](using headGenerator: Generator[H], tailGenerator: Generator[T]): Generator[H *: T] = seed =>
 headGenerator.generate(seed) *: tailGenerator.generate(seed)

def derived[A](using m: Mirror.ProductOf[A], fieldsGenerator: Generator[m.MirroredElemTypes]): Generator[A] =
 fieldsGenerator.map(m.fromTuple)

Application à notre jeu de Blackjack

Ou encore plus simple :

Résultat:

Génération de la logique pour nous

Aucun impact sur les performances

Si ce n’est pas possible, nous sommes prévenus avant même de lancer le code !

val genderGenerator: Generator[Gender] = derived[Gender]

val playerGenerator: Generator[Player] = derived[Player]

val gameGenerator: Generator[Game] = derived[Game]

enum Gender derives Generator:

 case Male, Female, Other

case class Player(name: String, gender: Gender) derives Generator

case class Game(id: Int, winners: Map[Player, Boolean]) derives Generator

Merci de m’avoir écouté

Des questions ?

