
Formation Git
Raphaël FROMENTIN

Sommaire

Histoire de Git

Avantages

Fonctionnement

Commandes de base

Live coding

Un peu d’histoire

Linus Torvalds

Linux

Les origines de Git

Situation de l’époque

Beaucoup d’allers-retours manuels

Intégration des changements dans le code principal assez douloureux

Gérer plusieurs personnes qui développent en parallèle sans tout casser est difficile

Envoi de bouts de code par mail

La solution
Git !

"Git" veut dire "Connard" en argo britannique

La solution
Git !

Avantages:

Chacun peut travailler en parallèle

Chacun peut suivre ce que font les autres

Même en solo:

Historique des changements

Facile de coder sur plusieurs appareils

Facile de tester des approches et pouvoir rollback à tout moment

Fonctionnement
Version Control System (VCS)

Échange entre plusieurs dépôts de code

Dépôt local
Dépôt distant/remote

(e.g sur GitHub, GitLab, ForgeJo...)

Fonctionnement
Version Control System (VCS)

Un dépôt contient plusieurs branches
C'est à dire plusieurs historiques alternatifs

Fonctionnement
Version Control System (VCS)

Une branche est une suite de commits
Un commit est un groupe de changements annotés d'un message et d'un auteur.

Exemple à partir de l'historique de Tekiens.net :

Petit kiff personnel avec Git Story

https://tekiens.net/
https://initialcommit.com/tools/git-story

Cas pratique
Toujours avec Tekiens.net

Un bug dans Tekiens !

if (Array.isArray(newObject[field])) {

 const tempRes = arrayDifference(originalObject[field], newObject[field]);

 if (tempRes.length > 0) res[field] = tempRes;

} else if (isObject(newObject[field])) {

 //Check if there's a difference

 const tempRes = objectDifference(originalObject[field], newArray[field]);

 if (Object.keys(tempRes) > 0) res[field] = tempRes;

} else if (newObject[field] != originalObject[field]) {

 res[field] = newObject[field];

}

https://tekiens.net/

Cas pratique
Toujours avec Tekiens.net

Un bug dans Tekiens !

On veut vérifier si tempRes n'est pas vide ⇒ Object.keys(tempRes).length > 0

 //Check if there's a difference

 const tempRes = objectDifference(originalObject[field], newArray[field]);

 if (Object.keys(tempRes) > 0) res[field] = tempRes;

if (Array.isArray(newObject[field])) {

 const tempRes = arrayDifference(originalObject[field], newObject[field]);

 if (tempRes.length > 0) res[field] = tempRes;

} else if (isObject(newObject[field])) {

} else if (newObject[field] != originalObject[field]) {

 res[field] = newObject[field];

}

https://tekiens.net/

Cas pratique
Toujours avec Tekiens.net

Étape 1 : faire les changements

https://tekiens.net/

Cas pratique
Toujours avec Tekiens.net

Étape 2 : Ouvrir une Merge Request (Gitlab) ou Pull Request (Github)

La faire relire par quelqu'un (c'est mieux)

https://tekiens.net/

Cas pratique
Toujours avec Tekiens.net

Étape 3 : Fusionner les changements.

Et c'est tout !

https://tekiens.net/

Les commandes de base de Git
<...> des paramètres obligatoires et [...] des paramètres optionels

Cloner un dépôt distant (généralement la première commande que l’on fait) :

Initialiser un dépôt local (pratique si vous avez déjà du contenu) :

Lier son dépôt local à un dépôt distant (généralement ce qu’on fait après git init) :

Par convention, on nomme par défaut du dépôt distant origin .

Mettre à jour les informations des dépôts distants :

git clone <url>

git init

git remote add <nom> <url>

git fetch

Les commandes de base de Git
<...> des paramètres obligatoires et [...] des paramètres optionels

Lister les branches :

Changer de branche :

Afficher l’historique :

Récupérer les changements :

En local, privilégiez avec --rebase pour éviter de polluer votre historique avec un commit de merge (ce qui se passe sans --rebase).

git branch [--show-current] [--all]

git switch <branch>

git log

git pull [--rebase]

Les commandes de base de Git
<...> des paramètres obligatoires et [...] des paramètres optionels

Stage ses changements (pour les inclure dans le prochain commit) :

On peut passer des dossiers directement comme `.` pour inclure tout le dossier actuel.

Créer un commit :

Si -m n'est pas précisé, Git vous demandera d'entrer un message, souvent via l'éditeur Vim par défaut (:q pour quitter/confirmer).

Push les nouveaux commits :

Privilégiez le push sans force. Si vous devez le faire, préférez --force-with-lease à --force et évitez de le faire sur votre branche

principale aka main ou master .

git add <fichier1> <fichier2> ...

git commit [-m <message>]

git push [--force-with-lease]

Vous n’aimez pas le terminal ?

Clients graphiques :

GitKraken Desktop

GitHub Desktop

…

Intégration dans la plupart des éditeurs de code et IDEs :

IDEs JetBrains (Intellij IDEA, PyCharm, PHPStorm…)

VSCode

…

Mais savoir se débrouiller avec le terminal permet d’utiliser Git quelque soit les autres outils à disposition.

Des alternatives existent

Exemple pratique
Faire une Pull Request sur un dépôt GitHub

https://github.com/Iltotore/git-course-example

https://github.com/Iltotore/git-course-example

Merci de m'avoir écouté !

Les slides sont sur GitLab:

https://gitlab.atilla.org/raphael.fromentin1/formation-git-2025/

Et en PDF sur https://slides.atilla.org/training-git-2025-2026.pdf

https://gitlab.atilla.org/raphael.fromentin1/formation-git-2025/
https://slides.atilla.org/training-git-2025-2026.pdf

